REKLAMA

REKLAMA

Kategorie
Zaloguj się

Zarejestruj się

Proszę podać poprawny adres e-mail Hasło musi zawierać min. 3 znaki i max. 12 znaków
* - pole obowiązkowe
Przypomnij hasło
Witaj
Usuń konto
Aktualizacja danych
  Informacja
Twoje dane będą wykorzystywane do certyfikatów.

Opanowanie logistyki przez inteligentne algorytmy jeszcze nam nie grozi

Subskrybuj nas na Youtube
Dołącz do ekspertów Dołącz do grona ekspertów
Krzysztof Oflakowski
GenAI w łańcuchach zaopatrzenia w 2024 roku
Opanowanie logistyki przez inteligentne algorytmy jeszcze nam nie grozi
Krzysztof Oflakowski

REKLAMA

REKLAMA

Dotychczasowe doświadczenia firm próbujących wdrożyć inteligentne algorytmy w swoich łańcuchach dostaw pokazują, że jest to zadanie ekstremalnie trudne. Zgodnie z harmonogramem i pierwotnymi założeniami robi to zaledwie 16% organizacji. Niewielki jest także udział przedsiębiorstw, które stosują już sztuczną inteligencję w wybranych procesach logistycznych. Programom implementacji towarzyszy ponadto obszerny katalog czynników ryzyka i brak odpowiedniego know-how, ale w branży panuje przekonanie, że AI i tak zrewolucjonizuje globalne łańcuchy zaopatrzenia.
rozwiń >

Początkowego entuzjazmu nigdy za mało

Jeszcze niedawno to blockchain, potem sieci 5G, następnie autonomiczne operacje miały zrewolucjonizować, a nawet całkowicie przedefiniować globalny sektor logistyczny. Nie sposób nie zauważyć, że właśnie na scenę wkroczyła sztuczna inteligencja (ang. Artificial Intelligence, AI) i to w wielu jej odsłonach. Presja na AI rośnie z każdym miesiącem i tak jak w przypadku wcześniejszych technologii można odnieść nawet wrażenie, że bez natychmiastowych wdrożeń, firmy zaczną tracić grunt pod nogami, pozycję rynkową i klientów. 

Taka katastrofa jednak nie nastąpi, a już na pewno nie będzie determinowana wyłącznie przez opóźnienia w obszarze AI. Choć katalog potencjalnych korzyści oraz aplikacji jest prawdziwie imponujący, to mało mówi się o tym, że zaprzęgnięcie do pracy algorytmów AI, a tym bardziej GenAI jest bardzo trudne, drogie i nawet w najbogatszych oraz najbardziej doświadczonych firmach pierwsze próby wdrożenia takich rozwiązań w operacjach logistycznych kończą się fiaskiem w więcej niż połowie przypadków. Przedsiębiorstwa jednak wciąż działają i dalej degenerują gigantyczne przychody. Z kolei tam, gdzie aplikacje się powiodły, wdrożenia dotyczą zaledwie kilku starannie wybranych obszarów operacyjnych i do szerokich integracji pozostała jeszcze bardzo daleka droga i ogrom pracy.

REKLAMA

Autopromocja

Podstawowe różnice pomiędzy modelami AI 

Dla lepszego zrozumienia, jak duży potencjał tkwi w poszczególnych rodzajach inteligentnego oprogramowania wykorzystywanego w transporcie, logistyce i szerzej w łańcuchach zaopatrzenia, warto przyjrzeć się temu, jakimi głównymi funkcjonalnościami różnią się i charakteryzują najpopularniejsze modele. 

Podstawowa różnica pomiędzy sztuczną inteligencją (AI) a jej wersją generatywną (GenAI) jest taka, że ta druga jest w stanie tworzyć zupełnie nowe, nieistniejące wcześniej formy, np. kod komputerowy, obrazy, modele 3D, tekst, audio, wideo, scenariusze i procesy albo łączyć wiele modalności jednocześnie. Powstałe formy są przy tym w pełni czytelne, naturalne i zrozumiałe dla człowieka. Można powiedzieć, że GenAI wykazuje pewien „ludzki” potencjał kreatywny i równolegle posiada zdolność uczenia się. 

Dla porównania tradycyjne algorytmy AI mają bardziej analityczny i prognostyczny charakter, pracują według zdefiniowanych wcześniej instrukcji, potrafią identyfikować nieprawidłowości i automatyzować procesy. Są systemami funkcjonującymi w oparciu o reguły bez rozbudowanych możliwości nauki i tworzenia nowych danych.

Warto jeszcze wspomnieć o uczeniu maszynowym (ang. machine learning, ML), które umożliwia oprogramowaniu uczenie się na podstawie dostarczonych danych i wzorców, dostosowywanie się do nich i generowanie decyzji, trendów lub prognoz. Uczenie maszynowe, tak jak tradycyjne modele AI nie posiadają zdolności produkcji nowych form, ale GenAI wykorzystuje techniki ML do własnej nauki i tworzenia nowych kreatywnych danych.

Czy inteligentne algorytmy w łańcuchu dostaw generują już realne przewagi?

Na tak postawione pytanie częściowo odpowiadają wyniki analiz przeprowadzonych przez Gartner w III kw. 2023 r. Globalne badanie rozproszonych geograficznie 818 profesjonalistów zarządzających łańcuchem dostaw miało pomóc w zrozumieniu m.in. jak potencjał zasobów cyfrowych jest wykorzystywany do zwiększenia produktywności przedsiębiorstw używających inteligentnych algorytmów. W toku analiz jednoznacznie wykazano, że najbardziej sprawne organizacje wykorzystują dane i inwestują w rozwiązania sztucznej inteligencji oraz uczenia maszynowego w celu automatyzacji i optymalizacji własnych procesów decyzyjnych w tempie ponad dwukrotnie szybszym niż ich słabsi konkurenci. Jako tych bardziej sprawnych określono firmy, których raportowane wyniki z ostatnich 12 miesięcy przebiły oczekiwania w 5 analizowanych kategoriach. Okazało się zatem, że 27% sprawniejszych organizacji wykorzystuje inteligentne algorytmy do automatyzacji i/lub optymalizacji procesów decyzyjnych w logistyce i dystrybucji. Jednocześnie robi to zaledwie 8% gorzej wypadających firm. To samo dotyczy prognozowania popytu, gdzie relacja wynosi 40% do 19% na korzyść wykorzystujących inteligentne narzędzia. Równie dużą różnicę widać w zarządzaniu zamówieniami i fullfilmentem, gdzie dysproporcja wynosi 33% do 8%. Zbliżony wynik osiągnięto także w planowaniu podaży (31% do 12%) oraz sprzedaży i operacjach (24% do 10%). 

Analizy dotyczące korzyści wynikających z wdrożeń AI w logistyce prowadzone są także w Polsce. Z badania ID Logistics i K+ Research zrealizowanego w III kw. 2024 r. wśród 400 managerów odpowiedzialnych za łańcuchy zaopatrzenia wynika, że 36% respondentów prowadzących operacje w sektorze FMCG uważa, że AI może usprawniać ich procesy logistyczne. W obszarze handlu detalicznego odsetek ten wzrasta do 38%. Dokładnie taki sam optymizm panuje w sektorze mody i urody (38%), a niewiele mniej wskazań pochodzi z e-commerce (34%). Zdecydowanie najwięcej korzyści upatruje się jednocześnie w przyspieszeniu procesów (57%), optymalizacji kosztów (40%), ale także pozyskiwaniu dokładniejszych danych statystycznych i raportowania (32%). Duży potencjał przypisywany jest również ograniczaniu błędów, na które zwraca uwagę 31% profesjonalistów zarządzających logistyką. 

- Sam potencjał do osiągnięcia określonych korzyści nie może decydować o natychmiastowym wdrożeniu każdej nowej technologii pojawiającej się na rynku. Odpowiedzialna firma, na podstawie zapotrzebowania własnego i klientów, a w przypadku rozwiązań sztucznej inteligencji również odpowiedniego zaplecza technologicznego, powinna ocenić, czy określone rozwiązanie ma realne szanse na wygenerowanie oczekiwanego efektu. Niekoniecznie mowa tu o wyniku finansowym, choć ROI, czyli zwrot z inwestycji, powinien być ważnym czynnikiem decydującym o zasadności implementacji określonych narzędzi informatycznych. Jednak nie zawsze chodzi o pieniądze, czasem celem jest na przykład podniesienie jakości pracy, zmniejszenie oddziaływania organizacji na środowisko lub społeczność lokalną. Widzimy, że firmy często podejmują się prób wdrożenia poszczególnych rozwiązań będąc do tego nieprzygotowane, bez zaplecza wiedzy, innych niezbędnych technologii, bez testów, a nawet jasno zdefiniowanego celu i planu, który umożliwi jego osiągnięcie – mówi Marcin Smoła, dyrektor operacyjny w spółce ID Logistics Polska, świadczącej kompleksowe rozwiązania logistyczne i transportowe, obsługę e-commerce oraz zarządzanie łańcuchem dostaw w 18 krajach. 

- Tym bardziej podjęcie się wdrożenia narzędzi sztucznej inteligencji, a zwłaszcza generatywnej odmiany, wymaga przygotowania, bardzo dokładnego skalkulowania, jakie nakłady będą niezbędne do sfinalizowania takiej operacji i kiedy się one zwrócą. Należy także pamiętać o ludziach, ich kompetencjach i nastawianiu do tego typu działań. Trzeba mieć na uwadze inne zaawansowane technologie, z którymi AI będzie współpracować, gdyż żadna innowacja nie może działać w próżni. W tym szczególnym przypadku każdy najmniejszy czynnik ma znacznie, ponieważ wiemy, że nie jest to łatwe zagadnienie. Operujemy już wieloma najnowocześniejszymi rozwiązaniami i przyglądamy się również generatywnym algorytmom, ale wiemy, że inwestować w innowacje należy przede wszystkim mądrze – dodaje Marcin Smoła z ID Logistics. 

Dalszy ciąg materiału pod wideo
Procesy i korzyści z AI w łańcuchu zaopatrzenia

 

Procesy i korzyści z AI w łańcuchu zaopatrzenia

Krzysztof Oflakowski

Adaptacja inteligentnych algorytmów w logistyce, zwłaszcza GenAI jest trudniejsza niż się wydaje

Fakt, że adaptacje rozwiązań generatywnej sztucznej inteligencji są dalece bardziej skomplikowane, niż pierwotnie przyjmowane scenariusze potwierdzają analizy prowadzone w obszarze operacji logistycznych. Szczegółowych wniosków o problemach i wyzwaniach dotyczących wykorzystania potencjału sztucznej inteligencji, a zwłaszcza jej generatywnej formy dostarcza m.in. HFS i EY w badaniu opracowanym na początku 2024 r. W globalnej analizie przeprowadzonej wśród 460 managerów wysokiego szczebla odpowiedzialnych za łańcuchy dostaw w organizacjach, których roczne przychody przekraczały 1 mld dol. wykazano m.in., że zaledwie 16% prób wdrożenia GenAI podejmowanych w ostatnich 12 miesiącach zakończyło się sukcesem. Oznacza to, że scenariusz implementacji nie został ani zmieniony, ani opóźniony z powodu napotkanych problemów lub ryzyka. Takiego szczęścia w ciągu ostatniego roku nie miało jednak 62% managerów, których programy GenAI trzeba było redefiniować. W przypadku 30% organizacji konieczne było także opóźnienie harmonogramu wdrożenia.

Mało tego, spośród 73% przedsiębiorstw, które w ogóle myślą o wykorzystaniu generatywnych algorytmów w swoich operacjach logistycznych, zaledwie 7% zdołało ukończyć wdrożenie tylko w jednym lub kilku obszarach, a nie w całym podległym łańcuchu. Aż 27% organizacji z przychodami powyżej 1 mld dol. w ogóle nie podejmuje, ani nawet nie planuje inwestycji w GenAI w swojej logistyce. Widać więc wyraźnie, że bez takich rozwiązań także można funkcjonować i w żadnym wypadku generatywne algorytmy nie są kwestią egzystencjalną, przynajmniej na dziś. W ciągu kliku kolejnych lat nastawienie może jednak ewoluować, ponieważ 85% przedsiębiorstw uważa, że do 2030 r. GenAI odegra kluczową rolę w rozwoju łańcuchów zaopatrzenia, a 80% respondentów widzi ją jako siłę redefiniującą dotychczasowy model dostaw, który zmierza w kierunku sieci autonomicznych o niskiej ingerencji człowieka. Z takim twierdzeniem nie zgadza jednak się 7% firm, a 13% nie chce jednoznacznie wskazywać na powodzenie lub niepowodzenie takiego kierunku zmian.

Póki co obserwujemy raczej niski poziom dojrzałości wdrożeń generatywnych algorytmów w łańcuchach zaopatrzenia. Nie dość bowiem, że tylko 7% firm zanotowało pojedyncze sukcesy, to 35% znajduje się dopiero na etapie planowania. Koleje 19% prowadzi wczesny pilotaż albo weryfikuje swoje koncepcje, a jedynie 12% jest w fazie implantacji. Wszystkie etapy poza zakończoną aplikacją mogą wciąż podzielić los wspominanych 62% przedsiębiorstw, które musiały modyfikować przyjęte założenia ze względu na napotkane ryzyka lub trudność. Na podstawie wcześniejszych analiz można wręcz założyć, że prawdopodobieństwa udanego wdrożenia w przyjętym scenariuszu i harmonogramie wynosi obecnie 16%. Tak nisko usytuowane szanse potwierdzają tylko wyskoki poziom skomplikowania programów adaptacyjnych. 

GenAI w łańcuchach zaopatrzenia w 2024 roku

 

GenAI w łańcuchach zaopatrzenia w 2024 roku

Krzysztof Oflakowski

Co w łańcuchu dostaw generuje największe problemy i ryzyka?

Odpowiedź jest dość jednoznaczna. Większość komplikacji generują kwestie związane z danymi, a managerowie mając do wyboru 3 kluczowe trudności najczęściej wskazują problemy z utrzymaniem danych o wysokiej jakości (38%). Następnie podkreślają niewystarczające umiejętności pracowników oraz ryzyka związane z bezpieczeństwem (po 37%). Wyzwaniem jest nie tylko jakość, ale także dostęp do odpowiednich danych oraz skomplikowanie integracji do istniejących systemów, zgodność z regulacjami, zaplecze technologiczne oraz koszt implementacji. 

Ta ostatnia przeszkoda jest kluczową barierą dla polskich managerów zarządzających logistyką w swoich przedsiębiorstwach. W przytoczonym wcześniej badaniu ID Logistics, aż 55% wskazań dotyczyło właśnie wysokiego kosztu wdrożeń, jednak spory udział miały także trudności w implementacji AI w dotychczasowych procesach (39%) oraz niewystarczające zaplecze technologiczne (26%), niezrozumienie (24%) i niechęć do podjęcia ryzyka (20%).

Duże, badane przez HFS firmy wskazują na nieco inne czynniki ryzyka blokujące wdrażania GenAI. Wymienia się tam przede wszystkim kwestie regulacyjne dotyczące prywatności, zwiększoną podatność na cyberataki, możliwość uszczerbku na reputacji, niebezpieczeństwo zbytniego polegania na nieprzetestowanej technologii oraz wzrost niepewności o zatrudnienie i spadek produktywności pracowników.

Nikt nie czeka aż problemy rozwiążą się same, a nowe scenariusze wykorzystania AI ustawiają się w kolejce 

Firmy wdrażające inteligentne algorytmy są świadome barier i zagrożeń, dlatego prowadzą działania zwiększające prawdopodobieństwo własnego sukcesu i minimalizujące potencjalne ryzyka. Robią to m.in. wdrażając GenAI najpierw w tych obszarach, które zapewniają szybki zwrot z inwestycji (ROI) np. w zakresie prognozowania popytu. Innym sposobem jest także posiadanie wirtualnej i skalowalnej infrastruktury, która gwarantuje szybkie zwiększanie potencjału udanych wdrożeń. Czynnikiem czysto ludzkim jest z kolei odpowiednie przygotowanie pracowników i wyposażenie ich w najlepsze możliwe narzędzia, aby ograniczać niepewność i utrzymać wysoką produktywność.

W analizach widać, że utrzymanie produktywności pracowników cieszy się wysokim priorytetem, jednocześnie jej podniesienie dość często znajduje wśród benefitów wynikających z zastosowania sztucznej inteligencji. Katalog potencjalnych zastosowań robi się naprawdę długi i być może wkrótce łatwiej będzie zapytać czego AI lub GenAI nie potrafi, a nie odwrotnie.

Co sztuczna inteligencja może zaoferować logistyce?  

Brytyjski ośrodek Transport Intelligence (Ti), badający zjawiska zachodzące na globalnym rynku TSL, w raporcie z czerwca br. przytacza przykład predykcyjnego systemu zarządzania zapasami, w którym na podstawie dokonanych w przeszłości zamówień inteligentny algorytm jest w stanie wytypować towary, na które prawdopodobnie będzie popyt w zbliżającym się lub wybranym terminie. Idąc dalej, system oparty o AI jest także w stanie precyzyjnie wykalkulować wymaganą powierzchnię składowania na podstawie wymiarów, wagi i częstotliwości zamówień, podpowiadając jednocześnie umiejscowienie towaru w magazynie, które ułatwi kompletację, a w szerszej perspektywie zwiększy dostępną pojemność magazynowania. 

Ti naświetlił również kwestię robotów korzystających z inteligentnego oprogramowania. Maszyny takie mogą nie tylko poruszać się autonomicznie, ale także omijać przeszkody i korygować wcześniej popełniane błędy, automatycznie zwiększając własną wydajność pracy. To samo dotyczy precyzyjnego zarządzania stanami magazynowymi. Roboty z AI zmniejszają ryzyko braków i przewidują przyszłe zapotrzebowanie ułatwiając replenishment. Te wyposażone w AI i sensory mogą monitorować eksploatację sprzętu magazynowego informując o potencjalnych awariach lub zużyciu. Systemy wizyjne mogą z kolei identyfikować i podejmować właściwe towary nawet w sytuacji, kiedy są one częściowo zasłonięte, zabrudzone lub zniszczone w sposób uniemożliwiający identyfikację przez tradycyjne skanery. To samo dotyczy inspekcji wizualnej podczas przyjęcia lub wydania towaru. Systemy poszukują w takim przypadku wgięć, zadrapań czy uszkodzeń opakowań.

Trzy grosze w kwestii możliwych zastosowań AI dorzucił również inny brytyjski ośrodek badający m.in. łańcuchy dostaw, mianowicie Reuters Events. W swoim raporcie z grudnia 2023 r. przywoływał analizę przeprowadzoną przez Światowe Forum Ekonomiczne, która wykazała, że nawet 15% dystansu pokonywanego przez europejskie ciężarówki odbywa się bez ładunku, co można poprawić dzięki bardziej precyzyjnej optymalizacji tras. Oczywiście z wykorzystaniem AI. Innym ciekawym aspektem zaprezentowanym w dokumencie jest kalkulacja, mówiąca o tym, że ze względu na regulacje, konieczność serwisowania, kwestie związane z zatrudnieniem kierowców, innych pracowników oraz użyciem istniejących technologii sprawiają łącznie, że w Europie ciężarówki są na drodze zaledwie przez 29% czasu, znacząco obniżając potencjał posiadanych zasobów branży transportowej w porównaniu z innymi sektorami gospodarki. Z drugiej strony autonomiczne pojazdy oparte o AI mogą pozostawać na drodze nawet przez 78% czasu, co znacznie poprawia wydajność transportu drogowego. Efektem ubocznym zwiększonej wydajności są m.in. floty liczące mniej pojazdów, a co za tym idzie mniejsze emisje zanieczyszczeń. Do autonomicznego transportu towarowego w Europie jeszcze bardzo daleka droga, ale na AI może skorzystać nie tylko regionalny TSL, a cała światowa gospodarka. Wiadomo nawet ile taka korzyść może wynieść. Prognozy Parlamentu Europejskiego wskazują, że do 2030 r. sztuczna inteligencja może wpompować w globalne PKB pomiędzy 13 a 15,7 bln dol.

Krzysztof Oflakowski

Zapisz się na newsletter
Chcesz uniknąć błędów? Być na czasie z najnowszymi zmianami w podatkach? Zapisz się na nasz newsletter i otrzymuj rzetelne informacje prosto na swoją skrzynkę.
Zaznacz wymagane zgody
loading
Zapisując się na newsletter wyrażasz zgodę na otrzymywanie treści reklam również podmiotów trzecich
Administratorem danych osobowych jest INFOR PL S.A. Dane są przetwarzane w celu wysyłki newslettera. Po więcej informacji kliknij tutaj.
success

Potwierdź zapis

Sprawdź maila, żeby potwierdzić swój zapis na newsletter. Jeśli nie widzisz wiadomości, sprawdź folder SPAM w swojej skrzynce.

failure

Coś poszło nie tak

Źródło: Źródło zewnętrzne

Oceń jakość naszego artykułu

Dziękujemy za Twoją ocenę!

Twoja opinia jest dla nas bardzo ważna

Powiedz nam, jak możemy poprawić artykuł.
Zaznacz określenie, które dotyczy przeczytanej treści:
Autopromocja

REKLAMA

QR Code

REKLAMA

Księgowość
Zapisz się na newsletter
Zobacz przykładowy newsletter
Zapisz się
Wpisz poprawny e-mail
Sprzedałeś 30 rzeczy przez internet w roku? Twoje dane trafiły do urzędu skarbowego. MF i KAS walczą z szarą strefą w handlu internetowym i unikaniem opodatkowania

Ministerstwo Finansów (MF) i Krajowa Administracja Skarbowa (KAS) wdrożyły unijną dyrektywę (DAC7), która nakłada na operatorów platform handlu internetowego obowiązki sprawozdawcze. Dyrektywa jest kolejnym elementem uszczelnienia systemów podatkowych państw członkowskich UE. Dyrektywa nie wprowadza nowych podatków. Do 31 stycznia 2025 r. operatorzy platform mieli obowiązek składać raporty do Szefa KAS za lata 2023 i 2024. 82 operatorów platform przekazało za ten okres informacje o ponad 177 tys. unikalnych osobach fizycznych oraz ponad 115 tys. unikalnych podmiotach.

2 miliony firm czeka na podpis prezydenta. Stawką jest niższa składka zdrowotna

To może być przełom dla mikroprzedsiębiorców: Rada Przedsiębiorców apeluje do Andrzeja Dudy o podpisanie ustawy, która ulży milionom firm dotkniętym Polskim Ładem. "To test, czy naprawdę zależy nam na polskich firmach" – mówią organizatorzy pikiety zaplanowanej na 6 maja.

Obowiązkowe ubezpieczenie OC księgowych nie obejmuje skutków błędów w deklaracjach podatkowych. Księgowy jest chroniony dopiero, gdy wykupi rozszerzoną polisę OC

Księgowi w biurach rachunkowych mają coraz mniej czasu na złożenie deklaracji podatkowych swoich klientów – termin składania m.in. PIT-36, PIT-37 i PIT-28 mija 30 kwietnia. Pod presją czasu księgowym zdarzają się pomyłki, np. błędne rozliczenie ulg, nieuwzględnienie wszystkich przychodów czy pomyłki w zaliczkach na podatek. W jednej z takich spraw nieprawidłowe wykazanie zaliczek w PIT-36L zakończyło się naliczonymi przez Urząd Skarbowy odsetkami w wysokości ponad 7000 zł. Obowiązkowe ubezpieczenie OC księgowych nie obejmuje błędów w deklaracjach podatkowych – ochronę zapewnia dopiero wykupienie rozszerzonej polisy.

Rewolucja płacowa w całej UE od 2026 roku. Pracodawcy będą musieli ujawniać kwoty wynagrodzenia pracownikom i kandydatom do pracy

Wynagrodzenia przestaną być tematem tabu. Od czerwca 2026 roku pracodawcy będą mieli obowiązek ujawniania informacji o płacach, zarówno kandydatom do pracy, jak i zatrudnionym pracownikom. Czy to koniec nierówności i początek nowego rozdania na rynku pracy?

REKLAMA

Firmy ignorują KSeF? Tylko 5 tys. podmiotów gotowych na rewolucję e-fakturowania

Choć obowiązek korzystania z Krajowego Systemu e-Faktur wejdzie w życie za 9 miesięcy, zaledwie 5230 firm zdecydowało się na dobrowolne wdrożenie systemu. Eksperci biją na alarm – to ostatni moment na przygotowania. Firmy nie tylko ryzykują chaos, ale też muszą zmierzyć się z brakiem środowiska testowego, napiętym harmonogramem i rosnącą liczbą innych zmian w przepisach.

Spółka komandytowa bez VAT od dywidendy – ważna interpretacja skarbówki

Dywidenda wypłacana komplementariuszowi nie podlega VAT – potwierdził to Dyrektor Krajowej Informacji Skarbowej. Oznacza to, że spółki komandytowe, w których wspólnicy prowadzą sprawy spółki bez wynagrodzenia, nie muszą obawiać się dodatkowego obciążenia podatkowego. To dobra wiadomość dla przedsiębiorców poszukujących efektywnych i bezpiecznych rozwiązań podatkowych.

Fiskus wlepi kary za niezapłacony podatek od sprzedaży ubrań i zabawek w internecie? MF analizuje informacje o 300 tys. osób i podmiotów handlujących na platformach internetowych

Operatorzy platform, za pośrednictwem których dokonywane są transakcje w internecie, przekazali MF dane ponad 177 tys. osób fizycznych i 115 tys. podmiotów – poinformowała PAP rzeczniczka szefa KAS Justyna Pasieczyńska. Dane te są teraz analizowane.

Katastrofa fakturowa w 2026 roku? Kto odważy się wdrożyć obowiązek stosowania KSeF i faktur ustrukturyzowanych?

Niedawno opublikowano kolejną wersję projektu „nowelizacji nowelizacji” ustaw na temat faktur ustrukturyzowanych i KSeF, które mają być niezwłocznie uchwalone. Ich jakość woła o pomstę do nieba. Co prawda zaproponowane zmiany świadczą o tym, że twórcy przepisów chcą pozostawić tym, którzy połapią się w tych zawiłościach, jakieś możliwości unikania tej katastrofy, zachowując fakturowanie w dotychczasowej formie przynajmniej do końca 2026 r. Pytanie, tylko po co to całe zamieszanie i dezorganizacja obrotu gospodarczego – pisze prof. dr hab. Witold Modzelewski.

REKLAMA

Jak nie zbankrutować na IT: inteligentne monitorowanie i optymalizacja kosztowa środowiska informatycznego. Praktyczny przewodnik po narzędziach i strategiach monitorowania

W dzisiejszej erze cyfrowej, środowisko IT stało się krwiobiegiem każdej nowoczesnej organizacji. Od prostych sieci biurowych po rozbudowane infrastruktury chmurowe, złożoność systemów informatycznych stale rośnie. Zarządzanie tak rozległym i dynamicznym ekosystemem to nie lada wyzwanie, wymagające nie tylko dogłębnej wiedzy technicznej, ale przede wszystkim strategicznego podejścia i dostępu do odpowiednich narzędzi. Wyobraźcie sobie ciągłą potrzebę monitorowania wydajności kluczowych aplikacji, dbałości o bezpieczeństwo wrażliwych danych, sprawnego rozwiązywania problemów zgłaszanych przez użytkowników, a jednocześnie planowania przyszłych inwestycji i optymalizacji kosztów. To tylko wierzchołek góry lodowej codziennych obowiązków zespołów IT i kadry managerskiej. W obliczu tej złożoności, poleganie wyłącznie na intuicji czy reaktywnym podejściu do problemów staje się niewystarczające. Kluczem do sukcesu jest proaktywne zarządzanie, oparte na solidnych danych i inteligentnych systemach, które nie tylko informują o bieżącym stanie, ale również pomagają przewidywać przyszłe wyzwania i podejmować mądre decyzje.

Wojna celna USA - Chiny. Jak może się bronić Państwo Środka: 2 scenariusze. Świat (też Stany Zjednoczone) nie może się obejść bez chińskiej produkcji

Chiny mogą przekierować towary nadal objęte nowymi, wysokimi cłami USA przez gospodarki i porty azjatyckie lub (a raczej równolegle) przekierować sprzedaż dotychczas kierowaną do USA na inne rynki - prognozują eksperci Allianz Trade. Bardziej prawdopodobna jest przewaga drugiego scenariusza – tak było podczas pierwszej wojny handlowej prezydenta Trumpa, co obecnie oznaczać będzie m.in. 6% rokroczny wzrost importu z Chin do UE (ale też do innych krajów) w ciągu trzech najbliższych lat. Branża, która nie korzysta z żadnych wyłączeń w wojnie celnej – odzież i tekstylia może odczuć ją w największym stopniu na swoich marżach.

REKLAMA